Voodoo’s Introduction to JavaScript

© 1996, 1997 by Stefan Koch

Part 9: Layers I

What are layers?

Layers are one great new feature of the Netscape Navigator 4.0. This allows absolute positioning of objects like images. Besides that you can move objects on your HTML-page. You can also hide objects.

Layers can easily be manipulated with the help of JavaScript. I hope you get as enthusiatic about layers as I am.

You can only use layers with Netscape Navigator 4.0 at the moment!

As usual I won't describe all details of the different tags. There is a good document describing all elements of layers in Netscape Navigator 4.0 at http://home.netscape.com/comprod/products/communicator/index.html - so there is no need to rewrite this.

What exactly are layers? This can be explained quite easily: you take several sheets of paper. On one paper you write a text. On another one you draw an image. Write some text besides an image on a third paper and so on. Now, put these sheets of paper on a table. Let's say every paper is a layer. From this aspect a layer is some kind of container. It can contain objects - i.e. in this case text and images.

Now take a paper with an image on. Move it around on the table. Watch the image following the movements of the paper carefully. If you move the paper to the right the image will follow! What do we learn from this fascinating experience? Layers which can contain several different objects - like images, forms, text etc. - can be placed on your HTML-page and can be moved around. If you move a layer all objects contained in this layer will follow this movement.

Layers can overlap each other like papers on a table. Every layer can have transparent parts. Put a hole in one paper. Now put this paper above another paper. The hole is a 'transparent part' of the first paper - the content of the underlying paper shines through.

Creating layers

For creating a layer we need either the <layer> or <ilayer> tag. You can use the following properties:

Property�
Description�
�
name="layerName"�
The name of the layer�
�
left=xPosition�
The horizontal position of the top left corner�
�
top=yPosition�
The vertical position of the top left corner�
�
z-index=layerIndex�
Index number of layer�
�
width=layerWidth�
Width of the layer in pixel�
�
clip="x1_offset,y1_offset,x2_offset,y2_offset"�
Defines the area of the layer which shall be displayed�
�
above="layerName"�
Defines above which layer this layer will appear�
�
below="layerName"�
Defines below which layer this layer will appear�
�
Visibility=show|hide|inherit�
The visibility of the layer�
�
bgcolor="rgbColor"�
The background color - either name of a standard color or rgb-values�
�
background="imageURL"�
Background image�
�

The <layer> tag is used for layers which can be explicitly positioned. If you do not specify a position (with the left and top properties) the layer will be positioned in the top left corner of the window.

The <ilayer> tag creates a layer which position depends on the flow of the document.

Now let's start with an easy example. We want to create two layers. In the first layer we put an image and in the second layer we put a text. What we want to do is to display the text above the image.

�

The text is displayed above the image

Here is the source code:

<html>

<layer name=pic z-index=0 left=200 top=100>

</layer>

<layer name=txt z-index=1 left=200 top=100>

 <i> Layers-Demo </i>

</layer>

</html>

You can see that we define two layers with the <layer> tag. Both layers are positioned at 200/100 (defined through left and top). Everything between the <layer> and the </layer> tag (or <ilayer> and the </ilayer> tag) belongs to this layer.

You can see that we use the property z-index. This defines in which order the layers appear - i.e. in our case you tell the browser if the text will appear above or below the image. The layer with the highest z-index number will be displayed on top. You do not have to use 0 and 1 for the z-index - every positive integer is ok.

If you write z-index=100 in the first <layer> tag the text will be displayed below the image - as the text-layer has got a smaller z-index number (z-index=1). You can see the text through the image because I used a transparent background (gif89a format).

�

The text is displayed below the image

Layers and JavaScript

Now we are going to access layers through JavaScript. We want to start with an example where the user can push a button in order to hide and show a layer.

First we have to know how the layers are represented in JavaScript. As usual there are several ways. The best thing is to assign a name to every layer. If we define a layer with

<layer ... name=myLayer>

...

</layer>

we can access this layer through document.layers["myLayer"]. According to the documentation provided by Netscape we can also write document.myLayer - but this lets my browser crash. This is certainly only a problem of the preview version and will be solved in the final release (I am using Netscape Navigator 4.0 PR3 on WinNT at the moment). There seem to be no problems with document.layers["myLayer"] - so we are going to use this alternative.

You can also access the layers through an integer index. In order to access the bottommost layer you can write document.layers[0]. Please note that the index is not the same as the z-index property. If you have for example two layers called layer1 and layer2 with the z-index numbers 17 and 100 you can access these layers through document.layers[0] and document.layers[1] and not through document.layers[17] and document.layers[100].

There are several layer-properties which can be changed through JavaScript. The following example presents a button which lets you hide and display one layer (Netscape Navigator 4.0 - or higher - required!).

(The online version lets you test this script immediately)

The source code looks like this:

<html>

<head>

<script language="JavaScript">

<!-- hide

function showHide() {

 if (document.layers["myLayer"].visibility == "show")

 document.layers["myLayer"].visibility= "hide"

 else document.layers["myLayer"].visibility= "show";

}

// -->

</script>

</head>

<body>

<ilayer name=myLayer visibility=show>

<i>This text is inside a layer</i>

</ilayer>

<form>

<input type="button" value="Show/Hide layer" onClick="showHide()">

</form>

</body>

</html>

The button calls the function showHide(). You can see that this function accesses the property visibility of the layer-object myLayer. Through assigning "show" or "hide" to document.layers["myLayer"].visibility you can show or hide the layer. Please note that "show" and "hide" are strings - not reserved keywords, i.e. you cannot write document.layers["myLayer"].visibility= show.

I have used the <ilayer> tag instead of the <layer> tag because I wanted to put the layer in the flow of the document.

Moving layers

The properties left and top define the position of the layer. You can assign new values to these properties in order to set the position of the layer. The following line sets the horizontal position of the layer to 200 (in pixel):

document.layers["myLayer2"].left= 200;

We are now going to program a moving layer - this looks like a scroller inside the browser window.

(The online version lets you test this script immediately)

The script looks like this:

<html>

<head>

<script language="JavaScript">

<!-- hide

function move() {

 if (pos < 0) direction= true;

 if (pos > 200) direction= false;

 if (direction) pos++

 else pos--;

 document.layers["myLayer2"].left= pos;

}

// -->

</script>

</head>

<body onLoad="setInterval('move()', 20)">

<ilayer name=myLayer2 left=0>

<i>This text is inside a layer</i>

</ilayer>

</body>

</html>

We create a layer called myLayer2. You can see that we are using onLoad inside the <body> tag. We need to start the scrolling of the layer as soon as the page is loaded. We use setInterval() inside the onLoad event-handler. This is a new method of JavaScript 1.2 (i.e. the JavaScript version that is implemented in Netscape Navigator 4.0). This can be used to call a function over and over again in a certain time interval. We used setTimeout() for this in the last lessons. setInterval() works almost the same - but you have to call it only once.

Through setInterval() we are calling the function move() every 20 milliseconds. The function move() sets the layer to a certain position. As we call this function over and over again we get a fluent scrolling of the text. All we have to do in the function move() is to calculate the position of the layer and assign this value to document.layers["myLayer2"].left= pos.

If you look into the source code of this part of the online-tutorial you will realize that my code looks a little different. I have implemented some code so that people with older JavaScript-browsers won't get any errors. How can this be achieved? The following code will only be executed by browsers which understand JavaScript 1.2:

<script language="JavaScript1.2">

<!-- hide

document.write("You are using a JavaScript 1.2 capable browser.");

// -->

</script>

This is the same problem as we had with the Image-object. We can rewrite the code in a similar way. Setting a variable browserOK solves the problem.

(The online version demonstrates that moving layers can overlap)

©1996,1997 by Stefan Koch

e-mail:skoch@rumms.uni-mannheim.de

http://rummelplatz.uni-mannheim.de/~skoch/

My JavaScript-book: http://www.dpunkt.de/javascript

